关于我们 | 设为首页 | 加入收藏夹 | English
当前位置:行业资讯

低压驱动RF MEMS开关设计与模拟

来源:  作者:
近年来射频微电子系统(RF MEMS)器件以其尺寸小、功耗低而受到广泛关注,特别是MEMS开关构建的移相器与天线,是实现上万单元相控阵雷达的关键技术,在军 事上有重要意义。在通信领域上亦凭借超低损耗、高隔离度、成本低等优势在手机上得到应用。然而RF MEMS开关普遍存在驱动电压高、开关时间长的问题,劣于 FET场效应管开关和PIN二极管开关。相对于国外已取得的成果,国内的研究尚处于起步阶段。下文将针对MEMS开关的缺陷做一些改进。 1 RF MEMS开关的一般考虑 当MEMS开关的梁或膜受静电力吸引向下偏移到一定程度时达到阈值电压,梁或膜迅速偏移至下极板,电压大小取决于材料参数、开关尺寸及结构。梁或膜的材料 需要比较好的杨氏模量与屈服强度,杨氏模量越大谐振频率就越高,保证工作的高速稳定及开关寿命;尺寸设计上要考虑静电驱动力的尺寸效应;结构的固有振 动频率则影响开关的最高工作速度。单从结构上看,降低驱动电压的途径为:降低极板间距;增加驱动面积;降低梁或膜的弹性系数。常见的结构有串、并联悬 臂梁开关、扭转臂开关和电容式开关,前三者为电阻接触式,金属与信号线外接触时存在诸如插入损耗大等很多问题,而电容接触式开关的绝缘介质也存在被击 穿的问题。有研究表明,所加电压越高开关的寿命越短,驱动电压的降低势必导致开关速度变慢,如何同时满足驱动电压和开关速度的要求是当前的困难所在。 2 RIF MEMS开关的模拟与优化 对于电容式开关,驱动电压随着桥膜长度的增加而下降,桥膜残余应力越大驱动电压也越大。通常把杨氏张量78 GPa、泊松比O.44的Au作为桥膜材料,为获得好 的隔离度要求开关有大的电容率,这里选介电常数为7.5的S3N4作为介质层,桥膜单元为Solid98,加5 V电压,电介质为空气,下极板加O V电压。然后用ANSYS 建模、划分网格、加载并求解静电耦合与模态分析。5 V电压下的开关形变约为O.2 μm左右,尚达不到低压驱动要求。提取开关前五阶模态如图1所示。 可见开关从低阶到高阶的共振频率越来越大,分别为79.9 kHz,130.3 kHz,258.8 kHz,360.7 kHz,505.6 kHz,一阶模态远离其他模态,即不容易被外界 干扰,只有控制开关频率低于一阶模态的谐振频率才能保证其稳定工作。由于实际开关时间仍不理想,所以在膜上挖孔以减小压缩模的阻尼,从而增加开关速度 。虽然关态的电容比下降了,但孔可以减轻梁的重量,得到更高的力学谐振频率。最终的模型共挖了100个孔,并对两端做了弯曲处理以降低驱动电压,仿真得到 5 V电压下形变为1μm以上、稳定的开关时间在5μs以下的电容式开关. 考虑到电容式开关仍存在的介质击穿问题,这里对其结构加以改进,将扭转臂杠杆与打孔电容膜相结合,在减小驱动电压和提高开关速度的同时,又不影响电容 比,一定程度上抑制了电击穿。其工作原理是:push电极加电压时杠杆上抬,介质膜与接触膜间距离增大导致其耦合电容很小,信号通过传输线;pull电极加电 压时杠杆下拉,耦合电容变大,微波信号被反射。材料选择上仍以Au和S3N4为主,某些部分可用A1代替Au。结构与尺寸的设计上由超越方程与开关通断下的电容 方程得到估计值,下极板为25×25(单位制采用μMKSV,长度单位为μm,下同),其上附有绝缘介质层,孔为3.4×3.4,杠杆为100x30,结构层为20×20,极板 厚度为1。 在ANSYS做静电耦合与模态分析后利用ANSOFT HFSS对该开关进行3D电磁场仿真,进一步求得其插入损耗与隔离度,确定共面波导和接触膜的结构,从而完善开关 的射频性能。建模时忽略开关的弯曲,定义材料特性与空气辐射边界,利用wave port端口进行仿真,分别求解开态的插入损耗和关态的隔离度。介质层较薄时, 开关在10 GHz附近具有良好的隔离度,且插入损耗在1 dB以下。 3 RF MEMS开关的制备工艺 合理选择生长介质膜的工艺对开关性能有很大影响,本文的RF MEMS开关需要在基底表面生长一层氮化硅膜,一般选择LP-CVD工艺,而介质膜则选择PECVD工艺为 宜,金属膜的性能要求相对较低,用溅射方法即可。考虑到基底要求漏电流与损耗尽可能小,选取高阻硅与二氧化硅做基底,后者保证了绝缘要求。金质信号线 与下极板通过正胶剥离形成,电子束蒸发得到铝质上极板。但从可行性考虑,部分方案的工艺实现对于国内的加工工艺尚有难度,只能牺牲微系统的性能来达到 加工条件。 4 结语 本文主要从结构上进行了创新,通过计算机辅助设计仿真分析得到了理论解,一定程度上满足了设计初衷,但在工艺上还不成熟。更低的驱动电压和更高的开关 频率仍是亟待解决的问题,另外如何保证实际产品的可靠性、实用性也是未来的研究重点。
相关文章
热点关注
随机推荐
栏目列表

关于本站 | 会员服务 | 隐私保护 | 法律声明 | 站点地图 | RSS订阅 | 友情链接

免责声明:凡本站注明来源为xx所属媒体的作品,均转载自其它媒体转载目的在于传递更多信息,并不代表本站赞同其观点和对其真实性负责